Abstract
The article describes a feasibility study to assess the use of neural networks and traditional machine learning algorithms to solve various problems including image processing. A brief description of some algorithms of traditional machine learning, as well as anautomated service for choosing the best method for a specific task, is given. The authors also describe the features of artificial neural networks and the most popular places for theirapplication. An algorithm for solving the problem of detecting fire hazardous objects andlocalizing a fire source in a forest using video sequence frames is presented. The article compares the characteristics of artificial neural network models according to the followingcriteria: underlying architecture, the number of analyzed frames, the size of the input image, the transfer learning model used as a feature vector composing network. Acomparative analysis of traditional machine learning algorithms and neural networks withlong short-term memory in the problem of classification of forest fire hazards is made. A solution to localization of the source of fire based on clustering is described. A hybrid algorithm for finding a fire source in a forest is developed and illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.