Abstract

High stiffness and strength carbon fibres are commonly used to reinforce epoxy-resin composites. While wild Antheraea pernyi silk fibres exhibit high toughness originating from their α-helix/random coil conformation structures and their micro-fibre morphology, their insufficient strength and stiffness hinders them from being used in similar structural composites. In this work, we use interply hybridization of silk and carbon fibres to reinforce epoxy-matrix composites. With increased carbon fibre content, the quasi-static tensile/flexural stiffness and strength increases following the rule of mixtures while more silk fibre acts to increase ductility and impact strength. This results in a composite comprising equal volumes of carbon and silk fibres achieving an impact strength of 98 kJ m−2, which is twice that of purely carbon-fibre reinforced composites (44 kJ m−2). This work shows tough natural silk fibres and strong synthetic fibres can be successfully integrated into epoxy-resin composites for tailored mechanical properties.

Highlights

  • High stiffness and strength carbon fibres are commonly used to reinforce epoxy-resin composites

  • The crystallinity of A. pernyi silk fibre was calculated as 42%, which is higher than B. mori silk fibre (34%)

  • The crystal planes (120) and (121) in Fig. 1a indicated that β-sheet conformation is the dominant structure in both B. mori and A. pernyi fibres, but the crystal plane (200) and (202) that correlate with α-helix conformation could only be found in A. pernyi fibres

Read more

Summary

Introduction

High stiffness and strength carbon fibres are commonly used to reinforce epoxy-resin composites. Several studies have demonstrated that B. mori silk fibre-reinforced plastic composites (SFRPs) could outperform traditionally reinforced composites as structural materials[7,11,12] In this regard, our previous work[13] showed that a high-volume fraction of B. mori silk fabric, as much as 70%, could be used in epoxy-resin composites owing to its superior compressibility; these composites displayed an enhanced impact strength that was four times higher than the unreinforced epoxy matrix. A. pernyi silk fibre reinforcements, with their greater ductility and superior toughness, coupled with the stronger and stiffer carbon fibres, would seem to provide a solution to the brittleness of CFRP and insufficient stiffness of SFRP Based on this notion, our rationale for this study was to explore a hybridization of resilient-andtough A. pernyi silk fibres and stiff-and-strong carbon fibres to reinforce epoxy-resin matrix composites, which we reasoned should result in an outstanding combination of mechanical properties including stiffness, strength and toughness. Silk fibres could provide other desirable characteristics, such as lower density (the density of silk is 1300 kg m−3, as compared with the density of 1800 kg m−3 for carbon fibre), moderate cost and renewability

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.