Abstract

Incorporating sustainability metrics into the design of economically viable and environmentally responsible processes is crucial for achieving overall sustainability. Reactive distillation has been widely studied in this context, but studies on extractive distillation have been limited, particularly in ternary azeotropic separation. This study aims to address this gap by integrating green sustainability metrics into extractive distillation through multi-objective optimization, considering economic, environmental, and safety indicators simultaneously. The results showed that our approach resulted in greater sustainability improvements compared to a sequential approach, where optimization was initially based on economic objectives with the environmental and safety aspects evaluated subsequently. The optimized configurations for ethanol, tetrahydrofuran, and methanol separation using three column extractive distillation and four column extractive distillation in this work showed significant sustainability improvements compared to their base cases. Specifically, three column extractive distillation outperformed four column extractive distillation in energy, economic, environmental, and safety performance by 18%, 4%, 8%, and 18%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.