Abstract
In the past, system and subsystem level assessments for propulsion systems have been a long and drawn out serial process, typically taking several months to a year or more. Data exchange from one subsystem group to the next was a manual process. This was particularly the case when different computer platforms were being utilized to run the models. Each group would optimize their particular subsystem as a separate entity. There were no approaches available to facilitate the evaluation of how a particular subsystem, when combined with the engine, would impact the overall integrated system. The availability of tools to facilitate direct interface of the various subsystem models with engine performance decks was not available. As a result, the lead times for various iterations were such that not all of the groups were even working on the same configuration. Fortunately, software technology has been evolving, and the ability to integrate models is now becoming available. This paper describes work in progress of an innovative methodology for high-level integration of complex flight systems. This new approach will facilitate rapid integration and optimization of propulsion and secondary subsystems in a truly concurrent manner, providing capability for top-level evaluation of complex and highly integrated flight system architectures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.