Abstract
The global spread of COVID-19 has profoundly affected health and economies, highlighting the need for precise epidemic trend predictions for effective interventions. In this study, we used infectious disease models to simulate and predict the trajectory of COVID-19. An SEIR (susceptible, exposed, infected, removed) model was established using Wuhan data to reflect the pandemic. We then trained a genetic algorithm-based SEIR (GA-SEIR) model using data from a specific U.S. region and focused on individual susceptibility and infection dynamics. By integrating socio-psychological factors, we achieved a significant enhancement to the GA-SEIR model, leading to the development of an optimized version. This refined GA-SEIR model significantly improved our ability to simulate the spread and control of the epidemic and to effectively track trends. Remarkably, it successfully predicted the resurgence of COVID-19 in mainland China in April 2023, demonstrating its robustness and reliability. The refined GA-SEIR model provides crucial insights for public health authorities, enabling them to design and implement proactive strategies for outbreak containment and mitigation. Its substantial contributions to epidemic modelling and public health planning are invaluable, particularly in managing and controlling respiratory infectious diseases such as COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.