Abstract

Stable isotopes are an important tool to uncover animal migration. Geographic natal assignments often require categorizing the spatial domain through a nominal approach, which can introduce bias given the continuous nature of these tracers. Stable isotopes predicted over a spatial gradient (i.e., isoscapes) allow a probabilistic and continuous assignment of origin across space, although applications to marine organisms remain limited. We present a new framework that integrates nominal and continuous assignment approaches by (1) developing a machine-learning multi-model ensemble classifier using Bayesian model averaging (nominal); and (2) integrating nominal predictions with continuous isoscapes to estimate the probability of origin across the spatial domain (continuous). We applied this integrated framework to predict the geographic origin of the Northwest Atlantic mackerel (Scomber scombrus), a migratory pelagic fish comprised of northern and southern components that have distinct spawning sites off Canada (northern contingent) and the US (southern contingent), and seasonally overlap in the US fished regions. The nominal approach based on otolith carbon and oxygen stable isotopes (δ13C/δ18O) yielded high contingent classification accuracy (84.9%). Contingent assignment of unknown-origin samples revealed prevalent, yet highly varied contingent mixing levels (12.5-83.7%) within the US waters over four decades (1975-2019). Nominal predictions were integrated into mackerel-specific otolith oxygen isoscapes developed independently for Canadian and US waters. The combined approach identified geographic nursery hotspots in known spawning sites, but also detected geographic shifts over multi-decadal time scales. This framework can be applied to other marine species to understand migration and connectivity at a high spatial resolution, relevant to management of unit stocks in fisheries and other conservation assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.