Abstract
Detached buoyant kelp can disperse thousands of kilometres at sea and can colonize newly available shores in the wake of disturbances that wipe out competitors. Localized earthquake uplift can cause extirpation of intertidal kelp populations followed by recolonization. Sources of recolonizing kelp can be detectable in genomic structure of contemporary populations. Our field observations combined with LiDAR mapping identified a previously unrecognized zone of uplifted rocky coastline in a region that is slowly subsiding. Intertidal kelp (Durvillaea antarctica) on the uplifted section of coast is genetically distinctive from nearby populations, with genomic signatures most similar to that of kelp 300 km to the south. Genetic divergence between these locations suggests reproductive isolation for thousands of years. Combined geological and genetic data suggest that this uplift event occurred during one of four major earthquakes between 6000 and 2000 years ago, with one of the younger events most likely. Extirpation of the pre-existing kelp required sudden uplift of approximately 2 metres, precluding several small incremental uplift events. Our results show the power of integrating biological (genomic) analyses with geological data to understand ancient geological processes and their ecological impacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.