Abstract

AbstractModulating the surface and spatial structure of the host is associated with the reactivity of the active site, and also enhances the mass transfer effect of the CO2 electroreduction process (CO2RR). Herein, we describe the development of two‐step ligand etch–pyrolysis to access an asymmetric dual‐atomic‐site catalyst (DASC) composed of a yolk–shell carbon framework (Zn1Mn1‐SNC) derived from S,N‐coordinated Zn−Mn dimers anchored on a metal–organic framework (MOF). In Zn1Mn1‐SNC, the electronic effects of the S/N−Zn−Mn−S/N configuration are tailored by strong interactions between Zn−Mn dual sites and co‐coordination with S/N atoms, rendering structural stability and atomic distribution. In an H‐cell, the Zn1Mn1‐SNC DASC shows a low onset overpotential of 50 mV and high CO Faraday efficiency of 97 % with a low applied overpotential of 343 mV, thus outperforming counterparts, and in a flow cell, it also reaches a high current density of 500 mA cm−2 at −0.85 V, benefitting from the high structure accessibility and active dual sites. DFT simulations showed that the S,N‐coordinated Zn−Mn diatomic site with optimal adsorption strength of COOH* lowers the reaction energy barrier, thus boosting the intrinsic CO2RR activity on DASC. The structure‐property correlation found in this study suggests new ideas for the development of highly accessible atomic catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.