Abstract

Understanding growth patterns is central to properly interpreting paleobiological signals in tetrapods, but assessing skeletal maturity in some extinct clades may be difficult when growth patterns are poorly constrained by a lack of ontogenetic series. To overcome this difficulty in assessing the maturity of extinct archosaurian reptiles—crocodylians, birds and their extinct relatives—many studies employ bone histology to observe indicators of the developmental stage reached by a given individual. However, the relationship between gross morphological and histological indicators of maturity has not been examined in most archosaurian groups. In this study, we examined the gross morphology of a hypothesized growth series of Dromomeron romeri femora (96.6–144.4 mm long), the first series of a non-dinosauriform dinosauromorph available for such a study. We also histologically sampled several individuals in this growth series. Previous studies reported that D. romeri lacks well-developed rugose muscle scars that appear during ontogeny in closely related dinosauromorph taxa, so integrating gross morphology and histological signal is needed to determine reliable maturity indicators for early bird-line archosaurs. We found that, although there are small, linear scars indicating muscle attachment sites across the femur, the only rugose muscle scar that appears during ontogeny is the attachment of the M. caudofemoralis longus, and only in the largest-sampled individual. This individual is also the only femur with histological indicators that asymptotic size had been reached, although smaller individuals possess some signal of decreasing growth rates (e.g., decreasing vascular density). The overall femoral bone histology of D. romeri is similar to that of other early bird-line archosaurs (e.g., woven-bone tissue, moderately to well-vascularized, longitudinal vascular canals). All these data indicate that the lack of well-developed femoral scars is autapomorphic for this species, not simply an indication of skeletal immaturity. We found no evidence of the high intraspecific variation present in early dinosaurs and other dinosauriforms, but a limited sample size of other early bird-line archosaur growth series make this tentative. The evolutionary history and phylogenetic signal of gross morphological features must be considered when assessing maturity in extinct archosaurs and their close relatives, and in some groups corroboration with bone histology or with better-known morphological characters is necessary.

Highlights

  • Assessing the skeletal maturity of individuals of extinct taxa is critical to interpreting the paleobiology of their constituent species and clades

  • We examined the histology and gross morphology of the first available femoral growth series of a non-dinosauriform dinosauromorph to better understand the origin of the dinosaurian growth pattern

  • This muscle has been interpreted to form the anterior trochanter in many other early bird-line archosaurs (Hutchinson, 2001; Maidment & Barrett, 2011), which appears during ontogeny in several early dinosauromorphs (D. gregorii, Nesbitt et al, 2009a; Asilisaurus kongwe, Griffin & Nesbitt, 2016a)

Read more

Summary

Introduction

Assessing the skeletal maturity of individuals of extinct taxa is critical to interpreting the paleobiology of their constituent species and clades. This difficulty is exemplified in archosaurs (crocodylians, birds, and their extinct relatives), which possess a larger range of body sizes than any other clade of terrestrial animals (Carrano, 2006; Benson et al, 2014; Turner & Nesbitt, 2013) In this clade, many indicators of skeletal maturity in other living reptiles are absent or of limited use (e.g., epiphyseal fusion, Chinsamy-Turan, 2005; Frýdlová et al, 2017), making determining skeletal maturity difficult (Hone, Farke & Wedel, 2016)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.