Abstract

It is important to expedite our understanding of antibiotic resistance to address the increasing numbers of fatalities and environmental pollution due to the emergence of antibiotic resistance and multidrug-resistant strains. Here, we combined the CRISPR-enabled trackable genome engineering (CREATE) technology and transcriptomic analysis to investigate antibiotic tolerance in Escherichia coli We developed rationally designed site saturation mutagenesis libraries targeting 23 global regulators to identify fitness-conferring mutations in response to diverse antibiotic stresses. We identified seven novel mutations that confer resistance to the ribosome-targeting antibiotics doxycycline, thiamphenicol, and gentamicin in E. coli To the best of our knowledge, these mutations that we identified have not been reported previously during treatment with the indicated antibiotics. Transcriptome sequencing-based transcriptome analysis was further employed to evaluate the genome-wide changes in gene expression in E. coli for SoxR G121P and cAMP receptor protein (CRP) V140W reconstructions, and improved fitness in response to doxycycline and gentamicin was seen. In the case of doxycycline, we speculated that SoxR G121P significantly increased the expression of genes involved in carbohydrate metabolism and energy metabolism to promote cell growth for improved adaptation. In the CRP V140W mutant with improved gentamicin tolerance, the expression of several amino acid biosynthesis genes and fatty acid degradation genes was significantly changed, and these changes probably altered the cellular energy state to improve adaptation. These findings have important significance for understanding such nonspecific mechanisms of antibiotic resistance and developing new antibacterial drugs.IMPORTANCE The growing threat of antimicrobial resistance poses a serious threat to public health care and motivates efforts to understand the means by which resistance acquisition occurs and how this can be combatted. To address these challenges, we expedited the identification of novel mutations that enable complex phenotypic changes that result in improved tolerance to antibiotics by integrating CREATE and transcriptomic analysis of global regulators. The results give us a better understanding of the mechanisms of resistance to tetracycline antibiotics and aminoglycoside antibiotics and also indicate that the method may be used for quickly identifying resistance-related mutations.

Highlights

  • It is important to expedite our understanding of antibiotic resistance to address the increasing numbers of fatalities and environmental pollution due to the emergence of antibiotic resistance and multidrug-resistant strains

  • Complete site saturation mutagenesis of all 23 global regulators would require 181,500 mutations, which was at the limit of the possible library size that could be obtained

  • Previous studies have highlighted that mutations in global regulatory proteins that enable adaptation occur predominantly in their functional regions [1]

Read more

Summary

Introduction

In the CRP V140W mutant with improved gentamicin tolerance, the expression of several amino acid biosynthesis genes and fatty acid degradation genes was significantly changed, and these changes probably altered the cellular energy state to improve adaptation These findings have important significance for understanding such nonspecific mechanisms of antibiotic resistance and developing new antibacterial drugs. IMPORTANCE The growing threat of antimicrobial resistance poses a serious threat to public health care and motivates efforts to understand the means by which resistance acquisition occurs and how this can be combatted To address these challenges, we expedited the identification of novel mutations that enable complex phenotypic changes that result in improved tolerance to antibiotics by integrating CREATE and transcriptomic analysis of global regulators. Answering these questions can significantly improve the design of new antibiotics and the formulation of antibiotic combination therapies

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.