Abstract

Disaster management requires efficient allocation of essential facilities with consideration of various objectives. During the response and recovery phase of disaster management (RRDM), various types of missions occur in multiple periods, and each of them needs different support from facilities. In this study, a bi-objective mathematical model was derived to support multi-period RRDM by optimal allocation of required facilities such as drone stations, shelters, emergency medical facilities, and warehouses according to the mission life cycle. Connectivity between facilities was considered to ensure inter-facility complementarity. For efficient derivation of Pareto solutions, a modified epsilon-constraint algorithm for bi-objective optimization was developed. The algorithm was tested with a realistic disaster simulation scenario using HAZUS 4.0 as a demonstration of the benefits of the proposed approach. With the simulation experiments, the proposed approach was expected to provide efficient operational plans and guidelines to decision makers for the bi-objective optimization problem in RRDM systems. In addition, the consideration of inter-facility connectivity can play an important role in the RRDM, especially for robustness and readiness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.