Abstract
Solvent usage is a major source of environmental waste in pharmaceutical industry. The current paradigm shift toward continuous manufacturing in pharmaceutical industry has renewed the interest in continuous crystallization, which offers the prospect of easy solvent recycling. However, the selection of solvents for an integrated crystallization processes is nontrivial due to the likely trade‐off between optimal solvent properties for crystallization and solvent separation and recycling. A systematic approach for the simultaneous optimization of process conditions and solvent selection for continuous crystallization including solvent recycling is presented. A unified perturbed‐chain statistical associating fluid theory model framework is applied to predict thermodynamic properties related to solubility and vapor‐liquid equilibrium, which is integrated with a process model. A continuous mapping procedure is adopted to solve the optimization problem effectively. A case study based on continuous antisolvent crystallization of paracetamol with solvent separation via flash demonstrates the approach. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1205–1216, 2018
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.