Abstract

“Functional integration” is to integrate two or multiple systems or mechanisms that are independent with each other and to realize the two or multiple functions using only one actuation system. Maximization of engineering applications of actuation systems could be achieved through the use of the “functional integration” concept-based structural design. In this article, an integrated semi-active seat suspension, mainly composed of a switching mechanism, a transmission amplification mechanism, and a damping force- or torque-controllable rotary magnetorheological (MR) damper working in pure shear mode, for both longitudinal and vertical vibration attenuation, is proposed, designed, and fabricated. The switching mechanism employs the parallelogram frames as a motion guide which keeps the seat moving longitudinally and vertically. Both longitudinal and vertical motions are transformed into a reciprocating rotary motion that is transmitted to the rotary MR damper after an amplification by a gear mechanism. The torque generated by the MR damper can be tuned by adapting the applied current in real time, and hence, effective two-dimensional vibration control of the seat could be realized. The mathematical model of the semi-active seat suspension system is established, and vibration isolation performance of the system is simulated and analyzed. Based on the established experimental test rig, the prototype of the semi-active seat suspension system is tested, and the results of the mathematical model and the experimental test are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.