Abstract

A promising concept for the recovery of homogeneous catalysts is Reverse Flow Adsorption. In actual homogeneous catalyzed processes, a homogeneous transition-metal catalyst is at equilibrium with its free transition-metal center and ligands. Therefore, to apply Reverse Flow Adsorption, a combination of two adsorbents has to be used to reversibly adsorb: the transition-metal center and its ligands. The transition-metal center can be adsorbed by a suitable ligand immobilized onto a solid carrier, while the ligand is adsorbed by an immobilized transition-metal. Two groups of potential adsorbents were selected by the Hard and Soft Acid and Base (HSAB) theory for the adsorption of Co(II) and PPh3: (1) phosphor (polymer bound PPh3), sulfur (polymer bound methylsufanylmethyl) and chloride (polymer bound benzylchloride) functionalized adsorbents and (2) metal (Ag+, Co2 + and Na+) functionalized Amberlyst 15. The CoCl2 adsorption decreased, as predicted by the HSAB theory, according to: P > S > Cl. Metal functionalized adsorbents adsorbed the PPh3 with capacities decreasing as predicted by the HSAB theory: Ag+ > Co2 + > Na+. All adsorption interactions proved to be reversible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.