Abstract

A piezoelectric structural material has been developed. Lead Zirconate Titanate (PZT) submicronic nanoparticles have been dispersed in a thermostable high performance thermoplastic polymer Poly(Ether Ether Ketone) i.e. PEEK to ensure piezoelectric properties. The inorganic particles with a mean diameter of 900nm are polycrystalline as highlighted by HRTEM with a grain diameter estimated at 15nm. XRD patterns have shown that the crystalline structure is rhombohedral i.e. ferroelectric. The PZT/PEEK composites have been elaborated by extrusion which allows reaching a satisfactory dispersion of particles even at high volume fraction (30% in volume). One of the challenges was to find poling conditions compatible with the thermal stability of the matrix. Indeed, this composite must be poled above the polymer glass transition temperature to improve matching of dielectric permittivity between inorganic and organic phases. The influence of the poling electric field on the final piezoelectric activity of the composite has also been studied to better understand the role of the polymer matrix. Finally, after a poling step, the PZT/PEEK composite exhibits a piezoelectric strain coefficient which can be exploited over a wide temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.