Abstract

This brief presents an integrated optimization framework for battery sizing, charging, and on-road power management in plug-in hybrid electric vehicles. This framework utilizes convex programming to assess interactions between the three optimal design/control tasks. The objective is to minimize carbon dioxide (CO2) emissions, from the on-board internal combustion engine and grid generation plants providing electrical recharge power. The impacts of varying daily grid CO2 trajectories on both the optimal battery size and charging/power management algorithms are analyzed. We find that the level of grid CO2 emissions can significantly impact the nature of emission-optimal on-road power management. We also observe that the on-road power management strategy is the most important design task for minimizing emissions, through a variety of comparative studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.