Abstract

We report on the first realization of an integrated optical memory for light based on a laser written waveguide in a doped crystal. Using femto-second laser micromachining, we fabricate waveguides in Pr$^{3+}$:Y$_2$SiO$_5$ crystal. We demonstrate that the waveguide inscription does not affect the coherence properties of the material and that the light confinement in the waveguide increases the interaction with the active ions by a factor 6. We also demonstrate that, analogously to the bulk crystals, we can operate the optical pumping protocols necessary to prepare the population in atomic frequency combs, that we use to demonstrate light storage in excited and spin states of the Praseodymium ions. Our results represent the first realization of laser written waveguides in a Pr$^{3+}$:Y$_2$SiO$_5$ crystal and the first implementation of an integrated on-demand spin wave optical memory. They open new perspectives for integrated quantum memories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.