Abstract

The velocity information estimated by the global navigation satellite system (GNSS) receiver is an important element for the dynamic alignment of the inertial navigation system, and it is of great significance to analyze it deeply and meticulously. A variety of GNSS velocity measurement models show different characteristics in a changeable environment, and this status quo is bound to break the monotonous situation in which the Doppler model is widely used. In this regard, this paper applies different GNSS velocity measurement models to strap-down interial navigation system (SINS) dynamic alignment and continuous observation. In addition, aiming at the shortcomings of the traditional time-differenced carrier phase (TDCP) algorithm, an optimization method is deduced from the formula level, and two effective constraint algorithms are given. Then, according to the vehicle test results, comprehensively compare the integrated navigation performance of various speed measurement models, and analyze the improvement effect of the proposed TDCP algorithm. This paper provides a summary for the comprehensive study of GNSS velocity measurement model and the application of optimized carrier phase to integrated navigation, which has certain practical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.