Abstract
Hypoxia is as an endocrine disruptor, and, in crustaceans, the energy metabolic consequences of hypoxia in the brain tissue are still poorly understood. We combined gas chromatography-mass spectrometry (GC-MS)-based metabolomic analysis and high-throughput RNA sequencing to evaluate the metabolic effects and subjacent regulatory pathways in the brain tissue of the male Oriental river prawn (Macrobrachium nipponense) in response to hypoxia and reoxygenation. We recorded LC50 and heartbeats per minute of male M. nipponense juveniles. Hypoxia resulted in the generation of reactive oxygen species in the brain cells and alterations in gene expression and metabolite concentrations in the prawn brain tissue in a time-dependent manner. The transcriptomic analyses revealed specific changes in the expression of genes associated with metabolism pathways, which was consistent with the changes in energy metabolism indicated by the GC-MS metabolomic analysis. Quantitative real-time polymerase chain reaction and western blot confirmed the transcriptional induction of these genes because of hypoxia. The lactate levels increased significantly during hypoxia and decreased to normal after reoxygenation; this is consistent with a shift towards anaerobic metabolism, which may cause metabolic abnormalities in the brain tissue of M. nipponense. Overall, these results are consistent with metabolic disruption in the brain of M. nipponense exposed to hypoxia and will help in understanding how crustacean brain tissue adapts and responds to hypoxia and reoxygenation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.