Abstract

Spectral filtering is essential in daytime quantum key distribution (QKD), which can suppress the strong background noise caused by scattered solar irradiation. An integrated Fabry-Perot filter is implemented based on a scheme that combines a Fabry-Perot etalon and a dense-wavelength-division-multiplex filter for narrow linewidth filtering and broad-spectrum noise suppression, respectively. This filter is integrated into a butterfly package with single-mode fibers for optical input and output, thereby enhancing high robustness and ease of use. The measurement results show that the filter has a linewidth of 25.6 pm, a noise suppression of over 44.7 dB ranging between 1380-1760 nm, an optical efficiency of 74.5% with variation less than 0.9% in 120 min, and a polarization fidelity after compensation exceeding 99.9%. The ability of fine-tuning the central wavelength with 9.5 pm/°C makes it very suitable for satellite-based applications under the Doppler effect. Further analysis is also given to demonstrate the prospects of applying this filter in future satellite-based daytime QKD applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.