Abstract

This work presents an overview of the integrated strategy developed, as part of the DEMO Key Design Integration Issue 1 (KDII1), to protect the EU-DEMO first wall (FW) from planned and unplanned plasma transients by employing discrete limiters. The present Breeding Blanket (BB) FW design, which aims at minimizing the loss of neutrons while travelling to the breeding zone, is able to withstand steady state heat fluxes up to ≈1-1.5 MW/m² [1], which is not sufficient to guarantee its integrity for most plasma-FW direct contact. This is different from ITER, which has a FW designed for peak heat loads up to 4.6 MW/m2 [2], and it does not have the DEMO BB breeding related requirement. A series of documents was compiled in the DEMO Pre-Conceptual Design Phase, in support of the KDII1. The work presented here was presented at the 2020 DEMO Gate 1 (G1) review, and collects also the comments of the panel and the relative additional studies triggered by them. The design process, presented in this paper was adopted to systematically evaluate the impact of design changes, or new physics inputs, on the FW protection strategy and integration issues. It includes compiling the list of transients, and performing the relative plasma simulations, the design of discrete limiters and the evaluation of their capability to reduce the heat flux density on the FW, and finally a preliminary analysis of the heat loads effects on the Plasma Facing Components (PFC). All these aspects, together with preliminary limiter design, where considered since the beginning, in an integrated way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.