Abstract
On‐chip photodetectors are essential components in optical communications as they convert light into an electrical signal. Photobolometers are a type of photodetector that functions through a resistance change caused by electronic temperature fluctuations upon light absorption. They are widely used in the broad wavelength range from ultraviolet to mid‐infrared (MIR). In this work, a novel waveguide‐integrated bolometer that operates in a wide wavelength range from near‐infrared to MIR is introduced on the standard material platform with the transparent conductive oxides (TCOs) as the active material. This material platform enables the construction of both modulators and photodetectors using the same material, which is fully complementary metal–oxide–semiconductor compatible and easily integrated with passive on‐chip components. The photobolometers proposed here consist of a thin TCO layer placed inside the rib photonic waveguide to enhance light absorption and then heat the electrons in the TCO. This rise in electron temperature leads to decreasing electron mobility and consequential electrical resistance change. In consequence, a responsivity exceeding 10 A W−1 can be attained with a mere few microwatts of optical input power. Calculations suggest that further improvements can be expected with lower doping of the TCO, thus opening new doors in on‐chip photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.