Abstract

BackgroundSediments function as a secondary and significant source of tributyltin (TBT) and triphenyltin (TPT) in aquatic ecosystems and may pose a potential threat on benthic organisms and human health. The subchronic toxicity of sediment-associated TBT or TPT to snails Bellamya aeruginosa at environmentally relevant concentrations was investigated in this study. Multiple endpoints at the biochemical [ethoxyresorufin-O-deethylase (EROD), superoxide dismutase (SOD), catalase (CAT), protein carbonyl content (PCC) and lipid peroxidation (LPO)] and transcriptomic levels were examined.ResultsTBT or TPT in sediment could induce antioxidant enzymes’ activities and result in oxidative damage in the hepatopancreas of B. aeruginosa after 28-day exposure. A transcriptomic profile of B. aeruginosa exposed to TBT and TPT was reported. CYP genes and EROD activity were sensible and reliable biomarkers for toxicity assessment of TBT or TPT in sediments. Comparative pathway analysis revealed the alteration of steroid hormone biosynthesis and retinol metabolism in B. aeruginosa after 90-day exposure to sediment-associated TBT at the concentration of 2000 ng/g dw, which might affect both reproduction and lipogenesis functions. The ubiquitin proteasome system and immune system might be the toxicity target in B. aeruginosa after exposure to sediment-associated TPT for 90 days.ConclusionsThe results offered new mechanisms underlying the toxicity of sediment-associated tributyltin and triphenyltin.

Highlights

  • Sediments function as a secondary and significant source of tributyltin (TBT) and triphenyltin (TPT) in aquatic ecosystems and may pose a potential threat on benthic organisms and human health

  • Snails exposed to 100 ng/g sediment-associated TBT showed a significant (p < 0.05) increase of relative EROD activity at day 7 and day 28 than the control group

  • Snails exposed to 2000 ng/g TBT showed a significant (p < 0.01) enhancement of relative EROD activity at day 14 and day 28 than the control group. 2000 ng/g TBT increased the EROD activity by 2.71-fold of the control group at day 28

Read more

Summary

Introduction

Sediments function as a secondary and significant source of tributyltin (TBT) and triphenyltin (TPT) in aquatic ecosystems and may pose a potential threat on benthic organisms and human health. Tributyltin (TBT) and triphenyltin (TPT), have been widely used as fungicides in agricultural activities and as ingredients of antifouling paints since the 1960s [1]. They are potent endocrine disruptors, which may cause developmental malformations in oyster, death of mussels and deformation of gastropod. The sediments may act as a secondary and significant source of TBT and TPT pollution for aquatic ecosystems [12], which may pose a potential threat to aquatic organisms

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.