Abstract
Ovarian cancer represents a severe gynecological malignancy with a dire prognosis, underscoring the imperative need for dependable biomarkers that can accurately predict drug response and guide therapeutic choices. In this study, we harnessed online single-cell RNA sequencing (scRNAseq) and bulk RNA sequencing (RNAseq) datasets, applying the Scissor algorithm to identify cells responsive to paclitaxel. From these cells, we derived a gene signature, subsequently used to construct a prognostic model that demonstrated high sensitivity and specificity in predicting patient outcomes. Moreover, we conducted pathway and functional enrichment analyses to uncover potential molecular mechanisms driving the prognostic gene signature. This study illustrates the critical role of scRNAseq and bulk RNAseq in developing precise prognostic models for ovarian cancer, potentially transforming clinical decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.