Abstract

Poly(vinylidene fluoride) (PVDF) and its copolymers are electrically active materials that have the ability to harvest mechanical energy through mechanical vibrations and structural flexing. Due to the inherent nanoscale dependency of the molecular structure of PVDF copolymer, efficient methods for investigating the effects of chain orientation on its localized nanomechanical properties are very limited. In this manuscript, we use infrared atomic force microscope (IR-AFM), contact-resonance atomic force microscopy (CR-AFM), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (TEM), to reveal the correlations between localized molecular vibration, anisotropy, and the corresponding dynamic nanomechanical properties. IR-AFM is able to probe the chain orientation of the PVDF copolymer and CR-AFM is able to resolve the in-plane anisotropy along the axis of the polymer chain. The combination of these techniques can provide a quick, effective, nondestructive method to reveal the formation mechanisms, which could lead to optimization of the electroactive polymer organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.