Abstract
A mathematical theory is developed for constructing integral transformations in a partially bounded region with a radial heat flow - a massive body bounded from the inside by a cylindrical cavity. Constructed: an integral transformation, the image of the operator on the right side of the equation of unsteady heat conduction, the inversion formula for the image of the desired function. The proposed approach favorably differs from the classical theory of differential equations of mathematical physics for the construction of generalized integral transformations based on the eigenfunctions of the corresponding singular Sturm-Liouville problems. The developed method is based on the operational solution of the initial boundary problems of unsteady heat conduction with an initial function of a general form L2(r0,∞) belonging to the r > r0 region and homogeneous boundary conditions and is associated with the calculation of the Riemann-Mellin contour integrals from images containing various combinations of modified Bessel functions. At the same time, for the above-mentioned region, the method of Green's functions was developed by constructing integral representations of analytical solutions of the first, second and third boundary value problems through inhomogeneities in the initial formulation of the problem (boundary conditions, source function in the initial equation). Mathematical models for finding the corresponding Green's functions are formulated, and functional relations of all three Green functions included in the presented integral formula are written out with the help of the developed theory of integral transformations. The functional relations constructed in the article can be used when considering numerous special cases of practical thermal physics. The specific possible applications of the presented results in many areas of science and technology are given.
Highlights
A mathematical theory is developed for constructing integral transformations in a partially bounded region with a radial heat flow — a massive body bounded from the inside by a cylindrical cavity
Развит метод функций Грина, предложены интегральные соотношения для аналитических решений краевых задач нестационарного теплопереноса, содержащие многочисленные частные случаи практической теплофизики
Summary
Развита математическая теория построения интегральных преобразований в частично ограниченной области с радиальным потоком теплоты – массивное тело, ограниченное изнутри цилиндрической полостью. Построены: интегральное преобразование, изображение оператора в правой части уравнения нестационарной теплопроводности, формула обращения для изображения искомой функции. Предложенный подход выгодным образом отличается от классической теории дифференциальных уравнений математической физики построения обобщенных интегральных преобразований, основанной на собственных функциях соответствующих сингулярных задач Штурма–Лиувилля.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.