Abstract

To investigate the extent and locus of integral processing in speech perception, a speeded classification task was utilized with a set of noise-tone analogs of the fricative-vowel syllables (fae), (integral of ae), (fu), and (integral of u). Unlike the stimuli used in previous studies of selective perception of syllables, these stimuli did not contain consonant-vowel transitions. Subjects were asked to classify on the basis of one of the two syllable components. Some subjects were told that the stimuli were computer generated noise-tone sequences. These subjects processed the noise and tone separably. Irrelevant variation of the noise did not affect reaction times (RTs) for the classification of the tone, and vice versa. Other subjects were instructed to treat the stimuli as speech. For these subjects, irrelevant variation of the fricative increased RTs for the classification of the vowel, and vice versa. A second experiment employed naturally spoken fricative-vowel syllables with the same task. Classification RTs showed a pattern of integrality in that irrelevant variation of either component increased RTs to the other. These results indicate that knowledge of coarticulation (or its acoustic consequences) is a basic element of speech perception. Furthermore, the use of this knowledge in phonetic coding is mandatory, even in situations where the stimuli do not contain coarticulatory information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.