Abstract

In their paper which introduced Monsky-Washnitzer cohomology, Monsky and Washnitzer described conditions under which the definition can be adapted to give integral cohomology groups. It seems to be well-known among experts that their construction always gives well-defined integral cohomology groups, but this fact also does not appear to be explicitly written down anywhere. In this paper, we prove that the integral Monsky-Washnitzer cohomology groups are well-defined, for any nonsingular affine variety over a perfect field of characteristic p. We then compare these cohomology groups with overconvergent de RhamWitt cohomology. It was shown earlier that if the affine variety has small dimension relative to the characteristic of the ground field, then the cohomology groups are isomorphic. We extend this result to show that for any nonsingular affine variety, regardless of dimension, we have an isomorphism between integral Monsky-Washnitzer cohomology and overconvergent de Rham-Witt cohomology in degrees which are small relative to the characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.