Abstract

A moving parallel frame method is applied to geometric non-stretching curve flows in the Hermitian symmetric space Sp(n)/U(n) to derive new integrable systems with unitary invariance. These systems consist of a bi-Hamiltonian modified Korteweg-de Vries equation and a Hamiltonian sine-Gordon (SG) equation, involving a scalar variable coupled to a complex vector variable. The Hermitian structure of the symmetric space Sp(n)/U(n) is used in a natural way from the beginning in formulating a complex matrix representation of the tangent space 𝔰𝔭(n)/𝔲(n) and its bracket relations within the symmetric Lie algebra (𝔲(n), 𝔰𝔭(n)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.