Abstract

AbstractLet Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an n-dimensional vector space V. A submanifold X ⊂ Gr(d, n) gives rise to a differential system Σ(X) that governs d-dimensional submanifolds of V whose Gaussian image is contained in X. We investigate a special case of this construction where X is a six-fold in Gr(4, 6). The corresponding system Σ(X) reduces to a pair of first-order PDEs for 2 functions of 4 independent variables. Equations of this type arise in self-dual Ricci-flat geometry. Our main result is a complete description of integrable systems Σ(X). These naturally fall into two subclasses.• Systems of Monge–Ampère type. The corresponding six-folds X are codimension 2 linear sections of the Plücker embedding Gr(4, 6)$ \hookrightarrow \mathbb{P}^{14}$.• General linearly degenerate systems. The corresponding six-folds X are the images of quadratic maps $\mathbb{P}^{6}\dashrightarrow \ $Gr(4, 6) given by a version of the classical construction of Chasles.We prove that integrability is equivalent to the requirement that the characteristic variety of system Σ(X) gives rise to a conformal structure which is self-dual on every solution. In fact, all solutions carry hyper-Hermitian geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.