Abstract

The Ivancevic option pricing model comes as an alternative to the Black‐Scholes model and depicts a controlled Brownian motion associated with the nonlinear Schrodinger equation. The applicability and practicality of this model have been studied by many researchers, but the analytical approach has been virtually absent from the literature. This study intends to examine some dynamic features of this model. By using the well‐known ARS algorithm, it is demonstrated that this model is not integrable in the Painlevé sense. He’s variational method is utilized to create new abundant solutions, which contain the bright soliton, bright‐like soliton, kinky‐bright soliton, and periodic solution. The bifurcation theory is applied to investigate the phase portrait and to study some dynamical behavior of this model. Furthermore, we introduce a classification of the wave solutions into periodic, super periodic, kink, and solitary solutions according to the type of the phase plane orbits. Some 3D‐graphical representations of some of the obtained solutions are displayed. The influence of the model’s parameters on the obtained wave solutions is discussed and clarified graphically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.