Abstract

We report on a study of interaction effects on the polarization of a disordered two-dimensional electron system in a strong magnetic field. Treating the Coulomb interaction within the time-dependent Hartree-Fock approximation we find numerical evidence for dynamical scaling with a dynamical critical exponent z=1 at the integer quantum Hall plateau transition in the lowest Landau level. Within the numerical accuracy of our data the conductivity at the transition and the anomalous diffusion exponent are given by the values for non-interacting electrons, independent of the strength of the interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.