Abstract

Glucagon-like peptide-1 receptor (GLP-1R) is a specific target for insulinomas imaging since it is overexpressed in the tumor. Exendin-4 exhibits high affinity for the GLP-1R. In this study, a novel (18)F-labeled exendin-4 analog, (18)F-FBEM-Cys(39)-exendin-4, was synthesized and its potentials for GLP-1R imaging were also evaluated. (18)F-FBEM was synthesized by coupling (18)F-fluorobenzoic acid ((18)F-FBA) with N-(2-aminoethyl) maleimide, and the reaction conditions were optimized. Cys(39)-exendin-4 was then conjugated with (18)F-FBEM to obtain (18)F-FBEM-Cys(39)-exendin-4. The GLP-1R targeting potential and pharmacokinetic profile of the tracer were analyzed in INS-1 insulinoma and MDA-MB-435 breast tumor model, respectively. Under the optimal conditions, the yield of radiolabeled (18)F-FBEM was 49.1±2.0% (based on (18)F-FBA, non-decay corrected). The yield of (18)F-FBEM-Cys(39)-exendin-4 was 35.1±2.6% (based on the starting (18)F-FBEM, non-decay corrected). The radiochemical purity of (18)F-FBEM-Cys(39)-exendin-4 is >95%, and the specific activity was at least 35GBq/μmol. The GLP-1R-positive INS-1 insulinoma xenograft was clearly visible with good contrast to background, whereas GLP-1R-negative MDA-MB435 breast tumor was barely visible. Low levels of radioactivity were also detected at pancreas and lungs due to few GLP-1R expressions. GLP-1R binding specificity was demonstrated by reduced INS-1 tumor uptake of the tracer after coinjection with an excess of unlabeled Cys(39)-exendin-4 at 1h postinjection. The thiol-reactive reagent, (18)F-FBEM, was prepared with high yield and successfully conjugated to Cys(39)-exendin-4. Favorable preclinical data showing specific and effective tumor targeting by (18)F-FBEM-Cys(39)-exendin-4 suggest that the tracer may be a potential probe for insulinomas imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.