Abstract

There is no agreement about the immediate mechanism by which insulin hyperpolarizes skeletal muscle, adipocytes, and myocardium. Of three candidates, one has been eliminated; the hyperpolarization is not secondary to an increase in intracellular [K]. There are reports that insulin hyperpolarizes by increasing relative permeability to K compared with that to Na ions, and other reports that insulin stimulates an ouabain-sensitive electrogenic Na-K exchange pump. Our evidence has been interpreted to support the former and deny the latter, when rat skeletal muscle is bathed at normal [K]. Crucial evidence for the latter has not been reported: insulin hyperpolarizes to a potential more negative than the K equilibrium potential. We now report that when rat caudofemoralis muscle is incubated with insulin at normal extracellular [K], then depolarized by increasing extracellular [K] to 38.4 mM, by equimolar substitution of KCl for NaCl, there is hyperpolarization compared with potentials of muscles treated similarly with respect to [K] but without insulin. Under these circumstances, the membrane potential in the presence of insulin is more negative than the new K equilibrium potential, and, in contrast to our previous experience with muscles bathed only in normal [K], the hyperpolarization in high [K] is reduced or eliminated by ouabain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.