Abstract

BackgroundProtein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B), one of the regulatory subunits of PP1, can bind to PP1cδ, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cδ against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. However, it is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry.Results14 PPP1R12B phosphorylation sites were identified, 7 of which were previously unreported. Potential kinases were predicted for these sites. Furthermore, relative quantification of PPP1R12B phosphorylation sites for basal and insulin-treated samples was obtained by using peak area-based label-free mass spectrometry of fragment ions. The results indicate that insulin stimulates the phosphorylation of PPP1R12B significantly at serine 29 (3.02 ± 0.94 fold), serine 504 (11.67 ± 3.33 fold), and serine 645/threonine 646 (2.34 ± 0.58 fold).ConclusionPPP1R12B was identified as a phosphatase subunit that undergoes insulin-stimulated phosphorylation, suggesting that PPP1R12B might play a role in insulin signaling. This study also identified novel targets for future investigation of the regulation of PPP1R12B not only in insulin signaling in cell models, animal models, and in humans, but also in other signaling pathways.

Highlights

  • Protein phosphatase 1 (PP1) is one of the most abundant serine/threonine phosphatases; it is responsible for most protein dephosphorylation [1,2,3], which regulates diverse biological processes in eukaryotes

  • In an effort to discover phosphatases that may be involved in insulin signaling, we identified protein phosphatase 1 regulatory subunit 12A (PPP1R12A) as a novel endogenous, insulin stimulated interaction partner of insulin receptor substrate-1 (IRS-1), a well recognized player in insulin signaling, implying that PPP1R12A might play a role in IRS-1 dephosphorylation and insulin signaling [8]

  • The spectra obtained by HPLC-ESI-Tandem mass spectrometry (MS)/MS confirmed the presence of PPP1R12B with 63% sequence coverage (Figure 1)

Read more

Summary

Introduction

Protein phosphatase 1 (PP1) is one of the most abundant serine/threonine phosphatases; it is responsible for most protein dephosphorylation [1,2,3], which regulates diverse biological processes in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B), one of the regulatory subunits of PP1, can bind to PP1cδ, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cδ against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. It is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.