Abstract

When exposed to a surface fire, the probability of a tree to survive widely varies, depending on its capability to protect the cambium from lethal temperatures above 60 °C. Thereby, the bark, the entirety of all tissues outside the cambium, serves as an insulation layer. In laboratory experiments, the heat production of a surface fire was simulated and the time span τ60 until the temperature of 60 °C is reached in the inner bark surface was measured. Thereby, τ60—as a measure of the fire resistance—was quantitatively determined for seven tree species. In addition, the influence of bark thickness and moisture content on bark heat insulation capacities was examined. Independent of the tree species and bark moisture content a power function correlation between bark thickness and τ60 was found. Our results also show that fire resistance increases with decreasing bark density. The seven tree species examined can be classified in two groups differing highly significant in their bark structure: (1) tree species with a faintly structured bark, which show a low fire resistance, and (2) tree species with an intensely structured bark, showing a high fire resistance. Furthermore a mathematical model simulating heat conduction was applied to describe the experimental results, and some ideas for a transfer into biomimetic materials are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.