Abstract

Understanding the interfacial structure-property relationship of complex fluid-fluid interfaces is increasingly important for guiding the formulation of systems with targeted interfacial properties, such as those found in multiphase complex fluids, biological systems, biopharmaceuticals formulations, and many consumer products. Mixed interfacial flow fields, typical of classical Langmuir trough experiments, introduce a complex interfacial flow history that complicates the study of interfacial properties of complex fluid interfaces. In this article, we describe the design, implementation, and validation of a new instrument capable of independent application of controlled interfacial dilation and shear kinematics on fluid interfaces. Combining the Quadrotrough with both in situ Brewster angle microscopy and neutron reflectometry provides detailed structural measurements of the interface at the mesoscale and nanoscale in relationship to interfacial material properties under controlled interfacial deformation histories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.