Abstract

A measure of bipolar channel importance is proposed for EEG-based detection of neonatal seizures. The channel weights are computed based on the integrated synchrony of classifier probabilistic outputs for the channels which share a common electrode. These estimated time-varying weights are introduced within a Bayesian probabilistic framework to provide a channel specific and, thus, adaptive seizure classification scheme. Validation results on a clinical dataset of neonatal seizures confirm the utility of the proposed channel weighting for the two patient-independent seizure detectors recently developed by this research group: one based on support vector machines (SVMs) and the other on Gaussian mixture models (GMMs). By exploiting the channel weighting, the receiver operating characteristic (ROC) area can be significantly increased for the most difficult patients, with the average ROC area across 17 patients increased by 22% (relative) for the SVM and by 15% (relative) for the GMM-based detector, respectively. It is shown that the system developed here outperforms the recent published studies in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.