Abstract

The Mohr–Coulomb (M–C) failure criterion is one of the most widely used failure criteria in rock mechanics, although it has a number of shortcomings such as neglecting the nonlinear strength observed in rock or the effect of the intermediate principal stress σ 2. Other failure criteria have been proposed to effectively include in the predictions of failure the non-linear response of rock to confinement or the effects of the intermediate principal stress. The M–C criterion is still widely used, and it is arguably the criterion most used in practice. For example, stability evaluations of shallow rock structures such as slopes and foundations are routinely carried out by estimating a friction angle and a cohesion of the rock mass. To include the dependency of cohesion and friction angle on stresses, efforts are being made to estimate equivalent values of the M–C parameters for the range of stresses applicable to a particular design. The paper suggests a new and convenient approach to find the equivalent friction angle and cohesion from any failure criterion that can be expressed in terms of the Nayak and Zienkiewicz’s stress invariants. To demonstrate the capabilities and application of the methodology, the new approach is applied to two failure criteria: the Hoek–Brown (H–B) criterion and the Hoek–Brown and Willam–Warnke (HB–WW) criterion, 2-D and 3-D failure criteria, respectively. Results from the new method, in terms of equivalent friction and cohesion for the H–B criterion, are exactly the same as the results obtained from Balmer’s theory, which confirms the validity of the new method. The predicted equivalent friction and cohesion for the HB–WW criterion show a dependency on σ 2, which does not occur for a 2-D failure criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.