Abstract
The instantaneous Bethe-Salpeter equation, derived from the general Bethe-Salpeter formalism by assuming that the involved interaction kernel is instantaneous, represents the most promising framework for the description of hadrons as bound states of quarks from first quantum-field-theoretic principles, that is, quantum chromodynamics. Here, by extending a previous analysis confined to the case of bound-state constituents with vanishing masses, we demonstrate that the instantaneous Bethe-Salpeter equation for bound-state constituents with (definitely) nonvanishing masses may be converted into an eigenvalue problem for an explicitly---more precisely, algebraically---known matrix, at least, for a rather wide class of interactions between these bound-state constituents. The advantages of the explicit knowledge of this matrix representation are self-evident.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.