Abstract

State-of-the-art stixel methods fuse dense stereo and semantic class information, e.g. from a Convolutional Neural Network (CNN), into a compact representation of driveable space, obstacles, and background. However, they do not explicitly differentiate instances within the same class. We investigate several ways to augment single-frame stixels with instance information, which can similarly be extracted by a CNN from the color input. As a result, our novel Instance Stixels method efficiently computes stixels that do account for boundaries of individual objects, and represents individual instances as grouped stixels that express connectivity. Experiments on Cityscapes demonstrate that including instance information into the stixel computation itself, rather than as a post-processing step, increases Instance AP performance with approximately the same number of stixels. Qualitative results confirm that segmentation improves, especially for overlapping objects of the same class. Additional tests with ground truth instead of CNN output show that the approach has potential for even larger gains. Our Instance Stixels software is made freely available for non-commercial research purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.