Abstract
ABSTRACT Particulate matter (PM) emitted from fossil fuel-fired units can be classified as either filterable or condensible PM. Condensible PM typically is not measured because federal and most state regulations do not require sources to do so. To determine the magnitude of condensible PM emissions relative to filterable PM emissions and to better understand condensible PM measurement issues, a review and analysis of actual U.S. Environmental Protection Agency (EPA) Method 202 (for in-stack condensible PM10) and EPA Method 201/201A (for in-stack filterable PM10) results were conducted. Methods 202 and 201/201A results for several coal-burning boilers showed that the condensible PM, on average, comprises approximately three-fourths (76%) of the total PM10 stack emissions. Methods 202 and 201/201A results for oil- and natural gas-fired boilers showed that the condensible PM, on average, comprises 50% of the total PM10 stack emissions. Methods 202 and 201/201A results for oil-, natural gas-, and kerosene-fired combustion turbines showed that the condensible PM, on average, comprises 69% of the total PM10 stack emissions. Based on these limited measurements, condensible PM can make a significant contribution to total PM10 emissions for fossil fuel-fired units. A positive bias (indicating more condensible PM than is actually emitted) may exist in the measured data due to the conversion of dissolved sulfur dioxide to sulfate compounds in the sampling procedure. In addition, these Method 202 results confirm that condensible PM, on average, is composed mostly of inorganic matter, regardless of the type of fuel burned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.