Abstract
The system of two resources R and R and one consumer C is investigated within the Rosenzweig-MacArthur model with a Holling type II functional response. The rates of consumption of particular resources are normalized as to keep their sum constant. Dynamic switching is introduced as to increase the variable C in a process of finite speed. The space of parameters where both resources coexist is explored numerically. The results indicate that oscillations of C and mutually synchronized R, which appear equal for the rates of consumption, are destabilized when these rates are modified. Then, the system is driven to one of fixed points or to a limit cycle with a much smaller amplitude. As a consequence of symmetry between the resources, the consumer cannot change the preferred resource once it is chosen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.