Abstract

Possessing remarkable electronic, mechanical and optical properties, pristine single-walled carbon nanocones (CNCs) are envisioned here to be pulled-out co-axially from a nanocone stack. The process is simulated using molecular mechanics (MM) and dynamics (MD) employing MM3 and REBO + LJ potentials, respectively. During pulling-out, rim of the lowermost cone is constrained while the tip of the outermost cone is displaced axially from its equilibrium, quasi-statically in case of MM and by prescribing velocity of 0.1 Å/pico-sec in case of MD. During pulling-out, at a critical distance, the top cone abruptly breaks the axial symmetry with its wall deforming considerably outward. The source of this instability is building-up of compressive circumferential strain in the wall with increasing displacement; a competition between stretching and van der Waal's energy terms of the system. Interestingly, during reversal of the pulling-out process, the system is found to trace a different equilibrium path. Further, in a few-walled CNCs if the tip of the top-most cone is compressed from its equilibrium position, the stack inverts completely by breaking axial symmetry aided by snap-through buckling in segments of the periphery. Irrespective of apex angle, hydrogen passivation, temperature and potential used, the aforementioned observations are found to be intrinsic to the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.