Abstract

Stability of a thin viscous Newtonian fluid draining down a uniformly heated porous inclined plane is examined. The long-wave linear stability analysis is performed within the generic Orr-Sommerfeld framework both theoretically and numerically. An evolution equation for the local film thickness for two-dimensional disturbances is derived to analyze the effect of long-wave instabilities. The parameters governing the film flow system and the porous substrate strongly influence the wave forms and their amplitudes and hence the stability of the fluid. The long-time wave forms are either time-independent wave forms that propagate or time-dependent modes that oscillate slightly in the amplitude. The role of permeability and Marangoni number is to increase the amplitude of the disturbance leading to the destabilization state of the film flow system. The permeability of the porous medium promotes the oscillatory behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.