Abstract
Metallic nanowires (NWs) with twin boundaries (TBs) running parallel to the NW length direction exhibit unusual plastic strain recovery owing to the interaction of dislocations with TBs. Here, based on in-situ transmission electron microscopy nanomechanical testing and molecular dynamics simulations, we report observation and quantification of dislocation nucleation, interaction with TBs, and retraction in bi-twinned Ag NWs with a single TB along the NW length direction. Our results show that leading partial dislocations nucleated from the free surface can be hindered by the TB, and upon unloading all or part of the leading partials can retract due to the repulsive force from the TB, leading to full or partial plastic strain recovery (Bauschinger effect), respectively. The bi-twinned Ag NWs can undergo stress relaxation, even at a stress below the yield strength, where the plastic strain also recovers upon unloading. The relaxation and recovery behaviors are compared to those of penta-twinned Ag NWs. Our results illustrate that the internal TBs in NWs can interact with surface-nucleated dislocations, leading to time-dependent plastic strain recovery and Bauschinger effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.