Abstract

We investigated physical steric and thermal stability effects induced by cholesterol and polyethylene glycol (PEG) in liposomes encapsulated with riboflavin. The composition of liposome was varied systematically to decipher the individual and combined effects of cholesterol and PEG on the stabilization of liposomes, specially the photopolymerizable liposomes for their potential applications in photo-treatments. Our results indicate that inclusion of PEG in the lipids enhances the steric stabilization by adopting a brush-like regime that prevents the agglomeration of encapsulated liposomes. A mechanistic differential scanning calorimetry studies reveal the phase transitions and enthalpy changes in the lipid bilayer due to the presence of cholesterol suggesting its role in regulating membrane fluidity. Supporting in- vitro studies confirm the efficacy of PEGylated formulations encapsulating riboflavin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.