Abstract

Crown-ether coordination compounds with Mn2+ and Sn2+ as cations and 12-crown-4, 15-crown-5, and 18-crown-6 as ligands are synthesized. Their luminescence properties and quantum yields are compared and correlated with their structural features. Thus, MnI2(15-crown-5) (1), MnCl2(15-crown-5) (2), [Mn(12-crown-4)2]2[N(Tf)2]2(12-crown-4) (3), Sn3I6(15-crown-5)2 (4), and SnI2(18-crown-6) (5) are obtained by an ionic-liquid-based reaction of MX2 (M: Mn, Sn; X: Cl, I) and the respective crown ether. Whereas 1, 2, and 5 exhibit a centric coordination of Mn2+/Sn2+ by the crown ether, 3 and 4 show a sandwich-like coordination of the cation with two crown-ether molecules. All title compounds show visible emission, whereof 1, 2, and 5 have good luminescence efficiencies with quantum yields of 47, 39, and 21%, respectively. These luminescence properties are compared with recently realized compounds such as Mn3Cl6(18-crown-6)2, MnI2(18-crown-6), Mn3I6(18-crown-6)2, or Mn2I4(18-crown-6), which have significantly higher quantum yields of 98 and 100%. Based on a comparison of altogether nine crown-ether coordination compounds, the structural features can be correlated with the luminescence efficiency, which allows extraction of those conditions encouraging intense emission and high quantum yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.