Abstract
Development of water/wastewater treatment based on membrane distillation (MD) suffers from the drawback that the hydrophobic membrane could be wetted for various reasons. Despite significant efforts, there is uncertainty in addressing the wetting induced by scaling of calcium sulfate, which is ubiquitous and recalcitrant in MD processes. This study made the first attempt to analyze the interplay between the growing crystals and the porous structures in the framework of Stoney's equation. Optical coherence tomography (OCT) was exploited to measure the membrane shift, whereby the scaling-induced deformation was correlated with the variation in stress created in the crystal-containing layer. Along with the stress analysis, the OCT-based characterization was combined with conventional approaches to ascertain the dependence of the scaling-induced wetting on the rate of concentrating the crystallizing species when arriving at a high degree of supersaturation in the feed. This study would refine the physical picture for better understanding crystal-membrane interactions that result in not only the wetting phenomenon but also the irreversible damage of membrane structures, thereby lending itself to the development of strategies for MD-based applications with improved efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.