Abstract

Molecularly imprinted polymers (MIPs) prepared using an amide hydrogen-bonding functional monomer (acrylamide) exhibited efficient enantiomeric recognition properties in both organic and aqueous media in the HPLC mode. The results indicate that the amide functional groups formed strong hydrogen-bonding interactions with the template molecule, and specific recognition sites were created within the polymer matrix during the imprinting process. When Boc-L-Trp was used as the template, an MIP prepared in a polar organic solvent (acetonitrile) using acrylamide as the functional monomer showed better enantiomeric recognition of Boc-Trp than the MIPs prepared in the same solvent using an acidic (methacrylic acid) or a basic (2-vinylpyridine) functional monomer or a combination of an acidic and a basic functional monomer (methacrylic acid + 2-vinylpyridine). Our results indicate that in organic media the degree of retention of the sample molecule on the imprinted polymer was controlled by hydrogen-bonding interactions between the sample molecule and the polymer, while in aqueous media it was determined to a considerable extent by hydrophobic interactions. In both media the shape, size and the nature of the hydrogen-bonding groups of the sample molecules were all important factors in determining the enantiomeric and substrate selectivity. In the aqueous media, however, the hydrophobicity of the sample molecules was also found to play an important role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.